Skip to main content

PETE: Photon Enhanced Thermionic Emission


How to make solar energy super efficient

A small PETE device made with cesium-coated gallium nitride glows while being tested inside an ultra-high vacuum chamber. The tests proved that the process simultaneously converted light and heat energy into electrical current. (Credit: Nick Melosh)

STANFORD (US)—A new conversion process could make solar power production twice as efficient as existing methods—and potentially cheap enough to compete with oil.

The technique simultaneously uses the light and heat of the sun to generate electricity. And, unlike photovoltaic technology currently used in solar panels—which becomes less efficient as the temperature rises—the new process excels at higher temperatures.

Called "photon enhanced thermionic emission," or PETE, the process promises to surpass the efficiency of existing photovoltaic and thermal conversion technologies.

"This is really a conceptual breakthrough, a new energy conversion process, not just a new material or a slightly different tweak," says lead researcher Nick Melosh, an assistant professor of materials science and engineering at Stanford University. "It is actually something fundamentally different about how you can harvest energy."

And the materials needed to build a device to make the process work are cheap and easily available, meaning the power that comes from it will be affordable.

Melosh is senior author of a paper describing the tests the researchers conducted. It was published online this month in Nature Materials.

"Just demonstrating that the process worked was a big deal," Melosh says. "And we showed this physical mechanism does exist; it works as advertised."

What a waste

Most photovoltaic cells, such as those used in rooftop solar panels, use the semiconducting material silicon to convert the energy from photons of light to electricity. But the cells can only use a portion of the light spectrum, with the rest just generating heat.

This heat from unused sunlight and inefficiencies in the cells themselves account for a loss of more than 50 percent of the initial solar energy reaching the cell.

Nick Melosh in his Stanford Lab describes how the system works.

http://www.youtube.com/watch?v=CEl-PfrSdb0feature=player_embedded

(Credit: Jack Hubbard)

If this wasted heat energy could somehow be harvested, solar cells could be much more efficient. The problem has been that high temperatures are necessary to power heat-based conversion systems, yet solar cell efficiency rapidly decreases at higher temperatures.

Turn up the heat

Until now, no one had come up with a way to wed thermal and solar cell conversion technologies. Melosh's group figured out that by coating a piece of semiconducting material with a thin layer of the metal cesium, it made the material able to use both light and heat to generate electricity.

"What we've demonstrated is a new physical process that is not based on standard photovoltaic mechanisms, but can give you a photovoltaic-like response at very high temperatures," Melosh says. "In fact, it works better at higher temperatures. The higher the better."

While most silicon solar cells have been rendered inert by the time the temperature reaches 100 degrees Celsius, the PETE device doesn't hit peak efficiency until it is well over 200 C.

Because PETE performs best at temperatures well in excess of what a rooftop solar panel would reach, the devices will work best in solar concentrators such as parabolic dishes, which can get as hot as 800 C.

Dishes are used in large solar farms similar to those proposed for the Mojave Desert in Southern California and usually include a thermal conversion mechanism as part of their design, which offers another opportunity for PETE to help generate electricity as well as minimize costs by meshing with existing technology.

"The light would come in and hit our PETE device first, where we would take advantage of both the incident light and the heat that it produces, and then we would dump the waste heat to their existing thermal conversion systems," Melosh says. "So the PETE process has two really big benefits in energy production over normal technology."

Photovoltaic systems never get hot enough for their waste heat to be useful in thermal energy conversion, but the high temperatures at which PETE performs are perfect for generating usable high-temperature waste heat.

Melosh calculates the PETE process can get to 50 percent efficiency or more under solar concentration, but if combined with a thermal conversion cycle, could reach 55 or even 60 percent—almost triple the efficiency of existing systems.

Won't break the bank
The team would like to design the devices so they could be easily bolted on to existing systems, thereby making conversion relatively inexpensive.

The researchers used a gallium nitride semiconductor in the "proof of concept" tests. The efficiency they achieved in their testing was well below what they have calculated PETE's potential efficiency to be—which they had anticipated. But they used gallium nitride because it was the only material that had shown indications of being able to withstand the high temperature range they were interested in and still have the PETE process occur.

With the right material—most likely a semiconductor such as gallium arsenide, which is used in a host of common household electronics—the actual efficiency of the process could reach up to the 50 or 60 percent the researchers have calculated. They are already exploring other materials that might work.

Another advantage of the PETE system is that by using it in solar concentrators, the amount of semiconductor material needed for a device is quite small.

"For each device, we are figuring something like a 6-inch wafer of actual material is all that is needed," Melosh says. "So the material cost in this is not really an issue for us, unlike the way it is for large solar panels of silicon."

The cost of materials has been one of the limiting factors in the development of the solar power industry, so reducing the amount of investment capital needed to build a solar farm is a big advance.

"The PETE process could really give the feasibility of solar power a big boost," Melosh says. "Even if we don't achieve perfect efficiency, let's say we give a 10 percent boost to the efficiency of solar conversion, going from 20 percent efficiency to 30 percent, that is still a 50 percent increase overall."

And that is still a big enough increase that it could make solar energy competitive with oil.

The research was largely funded by the Global Climate and Energy Project at Stanford and the Stanford Institute for Materials and Energy Science, which is a joint venture of Stanford and SLAC National Accelerator Laboratory, with additional support from the Department of Energy and the Defense Advanced Research Projects Agency.

More news from Stanford: http://news.stanford.edu/


source:
http://www.futurity.org/earth-environment/how-to-make-solar-energy-super-efficient/


Popular posts from this blog

Contoh Checklist saat beli mobil bekas

Diambil dari Majalah AutoBild Edisi 54 100 Checklist Mobil Bekas Berkualitas Kriteria Penilaian : (A) Problem minor. Biasanya karena habis dipakai dan normal terjadi di mobil yang sudah berumur. Tapi hal ini bisa dijadikan bahan negosiasi harga. Dan jika mobilnya masih relatif baru, problem ini juga bisa berarti biaya mahal. (B) Cacat yang bisa menjadi serius, jika membutuhkan investigasi lebih lanjut. (C) Kemungkinan adalah problem serius yang mahal dan sulit diperbaiki hingga normal. (D) JANGAN beli mobil ini!!!!!!!!!! Kesan Pertama 1. Dimana anda mobil tersebut? Jika diperlukan, dapatkah Anda menemukan penjualnya kembali? (D) 2. Apakah alamat penjualnya jelas? (D) 3. Bicara langsung ke penjual; apakah pertanyaan Anda dijawab dengan sigap? (D) 4. Lihat dan perhatikan sisi kendaraan, apakah terlihat lurus dan simetris? (D) 5. Periksa setiap sisi untuk mengenali kerusakan berat. (C) 6. Periksa celah antar panel, seharusnya rata dan konsisten. Jika tidak, ada kemungkinan

Daftar Alamat Bank Jabar Banten (BJB) Jakarta

Alamat dan telpon Kantor Cabang , Kantor Cabang Pembantu, dan Kantor Kas Bank Jabar dan Banten yang berlokasi di Jakarta meliputi wilayah Jakarta Pusat, Jakarta Timur , Jakarta Barat, Jakarta Utara, Jakarta Selatan Kantor Cabang - Bank Jabar Banten - Jakarta Nama KC Alamat Telpon Fax JAKARTA Bank DEVISA Jl.Jend.Sudirman Kav.2 Gedung Arthaloka Lt.Dasar & Lt.4 Jakarta Pusat 021-2511448, 2511449 021-2511450, 2514415 HASYIM ASHARI Jl. KH. Hasyim Ashari No. 32-34, Jakarta Pusat 021-6330676 021-6324430 MANGGA DUA Gedung Masterina Jl. Mangga Dua Raya Blok F1 No. 1-3 Jakarta Pusat 021-62204094, 62204095, 62204096 021-62204093 KEBAYORAN BARU Graha Iskandarsyah Lt. 2 JL. Iskandarsyah Raya no. 66 C Kebayoran Baru 12160 - Jakarta Selatan 021-7229777, 7207334 021-7206990, 7209941 RAWAMANGUN Jl. Pemuda No. 97 Kec. Pulogadung - Jakarta Timur 021-47861771, 47868072, 47868073 021-47863209 Kantor Cabang Pembantu - Bank Jabar Banten - Jakarta NAMA KCP ALAMAT TELPON

Cara ganti baterai keyBCA

http://groups.yahoo.com/group/stmpnb/message/2271 Nasabah BCA yang terhormat, Terima kasih atas kepercayaan Anda menggunakan layanan KlikBCA Individu  untuk melakukan berbagai transaksi perbankan Anda. Berdasarkan data yang ada pada kami, saat ini Anda telah menggunakan  KeyBCA dengan tipe Activcard. Bila baterai KeyBCA sudah lemah akan muncul icon/tanda gambar yang  menunjukkan bahwa KeyBCA dalam kondisi "low battery", maka Anda harus segera  mengganti baterai utamanya dengan baterai baru segera setelah icon tersebut  muncul. (Pada waktu penggantian baterai, KeyBCA harus dalam kondisi tidak  aktif). Berikut ini langkah-langkah penggantian baterai :  1. Buka penutup baterai KeyBCA yang terletak di bagian belakang KeyBCA      sebelah kanan bawah.  2. Ganti baterai utama dengan baterai baru  (proses ini harus berlangsung        dengan cepat) .  3. Tutup kembali penutup baterai KeyBCA.  4. KeyBCA sudah bisa digunakan kembali.  Keterangan : tipe baterai CR2032/3V-22